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1. Introduction and Problem Statement 
Perception can be viewed as a combination of two information streams, one 

responsible to predict the sensory consequences of actions, and a second 

providing actual sensory observations. In order to compensate for noise and 

uncertainty inherent in sensory information, the two streams are integrated to 

extract an internal model that predicts the sensory consequences of motor 

actions [1]. In both biological and technical systems such a model provides a belief 

of their state and is adjusted proportional to the uncertainty in the predictions [2]. 

Inspired by developmental processes known to occur in cortex, we propose a 

learning mechanism capable to represent such an internal model of 

sensorimotor space and the cross-sensory relations, by exploiting regularities 

in the sensorimotor streams [3].  

 

By exploiting regularities in sensorimotor mappings, structural learning is able to 

extract invariants between such mappings by learning the general rules that 

govern a set of tasks, enhancing adaptation and learning [4].  

 

In this work we propose combining distributed representations, learning 

mechanisms, and structural learning in a generic computational framework 

targeting neuro-robotic systems. We believe that such a framework can enhance 

the capabilities of robotic systems in complex dynamical operation scenarios. 

2. Basic Processing Model 
In order to introduce the proposed model, we provide a simple example in Figure 1. 

In the basic dual-modality scenario, the relation between sources of sensory data in 

Figure 1a is extracted between the pair of sensory modalities, as shown in Figure 1b. 

The input SOMs extract the 

statistics of sensory data (Figure 

1a), encode data (Figure 1d), and 

learn the sensitivity of each 

neuron (Figure 1e). 

If we consider learned tuning 

curves for 5 neurons in the input 

SOMs (i.e. neurons 1, 6, 13, 40, 

45) in Figure 1e, we notice that 

higher input distributions are 

represented by dense and sharp 

tuning curves (high resolution 

representation). 

The Hebbian learning process 

extracts the input co-activation 

pattern in the input streams and 

encode the relation between the 

sensors,  Figure 1e. 

Figure 1. Model architecture.  

a) Input data resembling a nonlinear relation and its distribution; 

 b) Basic architecture; c) Processing stages;  

d) Model internals; e) Extracted relation and data statistics. 

3. Experimental Setup and Model Instantiation 
4. Experimental Results 

6. Conclusions 

Figure 2. Experimental setup: a) Quadrotor platform;  

b) Reference system alignment and ground truth camera tracking system; 

c) Network structure. 

learned sensory relations (Figure 3a) resemble the underlying nonlinear 

functions (i.e. arctangent) and capture data irregularities 

learned relations balance sensory contributions to obey the relation (Figure 1b) 

to cancel individual estimation errors (e.g. accelerometer noise, gyroscope drift) 

learned relations are decoded for enforcing the values sensors can have 

individual angle estimates are improved by fulfilling the learned relations 

between sensors, Figure 3b 

inferred egomotion estimates are robust with respect to noise and drift but not 

to intrinsic effects (e.g. magnetometer offset) 

As basic testing scenario, we consider a quadrotor (Figure 2a) hovering in an 

uncluttered environment, while an overhead camera system keeps track of its 

position and orientation in the 3-dimensional space (Figure 2b). 

We proposed and evaluated a learning model able to: 

use simple and computationally effective processing mechanisms to capture the intrinsic correlational structure and statistics of sensoritmotor data 

use efficient representation and computation mechanisms without prior assumptions, in order to alleviate the need for tedious design and parameterization 

provide precise state estimates by unsupervisedly learning multisensory integration rules of a motor task from available sensorimotor streams 
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Figure 3. Network instantiation for 3D egomotion estimation: a decoupled view analysis. 

a) Learned relations; b) Estimation quality using learned relations. 

5. Work in progress 

Learning a model that has a structure or 

topology that can in principle represent the 

relationship between inputs (motor 

commands) and observations (sensory 

measurements) of  task using computation in 

spiking neural networks. 

Structural learning: discover the task 

structure from the learned 

sensorimotor relations relying on the 

long-term history of motor commands 

and their sensory consequences 

Figure 4. Experimental setup: a) Mobile manipulation platform;  

b) Learning network and simulated system; 

c) Structural learning principles. 
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Design a unified controller for the platform (arm and base) to adapt for the 

manipulation of different objects (size, shape, color) and adapt control policies for 

such task. 


